
FSP: a Framework for Data Stream Processing
Applications targeting FPGAs

Alberto Ottimo

1st year PhD student

Alberto Ottimo 1Computer Science and Networking

Outline

• Context

• FSP Framework

• Running Example

• Evaluation

• Conclusion & Future Work

Alberto Ottimo 2Computer Science and Networking

Data Stream Processing

• Unbounded sequences of data items (tuples)

• Stringent requirements

• High-Throughput (tuples/sec)

• Low Latency

• Modeled as a Data-Flow graph

• Existing solutions:

• Apache Flink and Storm for distributed systems

• WindFlow for multicore shared-memory systems

Alberto Ottimo 3Computer Science and Networking

FPGAs

• Programmable integrated circuits composed by:

• Programmable Logic Modules

• Programmable Routing Switches

• DSP Blocks

• Memory Blocks

• Synthesis

• Hardware Description Languages: Verilog and VHDL

• High Level Synthesis: C/C++ and OpenCL

Alberto Ottimo 4Computer Science and Networking

Intel FPGA SDK for OpenCL

• OpenCL provides a framework for parallel programming

• Platform Model: Host connected to one or more devices

• Execution Model: Host program and Device kernels

• Programming Model: Data Parallel and Task Parallel

• Memory Model:

• Global / Constant Memory

• Local Memory

• Private Memory

• Intel FPGA SDK for OpenCL

• Single Work-Item programming model

• Channels Extension

Alberto Ottimo 5Computer Science and Networking

FSP Framework

• Develop of DSP application targeting FPGAs:
• A set of base operators

• Efficient Host<->Device communication mechanisms

• Hide the complexity of the implementation of the application structure

• Developer provides:
• the Application description using our DSL in Python

• the business logic OpenCL code of operators

Developer

Application
Description (Python) Operator Functions

FSP

Device

Common

Host

FPGA Compiler (aoc)

C++ Compiler

FPGA Bitstream

Host Program HOST

FPGA

Alberto Ottimo 6Computer Science and Networking

FSP Base Operators

• FSP provides a set of Base Operators

• Source: distribute tuples received from the Host

• Generator: generates tuples within the FPGA

• Sink: make available received tuples to the Host

• Collector: collects tuples without interact with the Host

• Map: applies one-to-one transformation. Output datatype can differ

• Filter: drops tuples if predicate is False, keeps them otherwise

Filter

FPGA

FPGA

Collector

Host

Generator

FPGAHostFPGA

Sink

Host

Source

FPGAHost

Map

FPGA

• Operators are Single Work-Item kernels

• Stateless: no needs of information to compute incoming tuples

• Stateful: compute an incoming tuple based on its State

• State implemented as:

• Private Memory

• Local Memory

• Global/Constant Memory

• Global Memory access can be:

• read/write only

• both read and write

• Global Memory visibility:

• one for each replica

• one shared among all replicas

Alberto Ottimo 7Computer Science and Networking

Operators: Stateless and Stateful

op

State

Alberto Ottimo 8Computer Science and Networking

Gather and Dispatch Policies

• Inter-kernel communication by using the Intel Channels extension

• Gather Policy:

• Blocking Mode

• Non-Blocking Mode

• Dispatch Policy:

• Forward

• RoundRobin

• Blocking mode

• Non-Blocking mode

• KeyBy

• Broadcast

Alberto Ottimo 9Computer Science and Networking

Host<->Device | N-Buffering

• Batch processing:

• one buffer

• long kernel downtime between kernel launches

• Stream processing:

• N buffers recycled in circular manner

• minimal/zero kernel downtime between kernel launches

• good for variable arrival rates

Kernel 1 Kernel 2 Kernel 3 Kernel 4

1 1

2 2

3 3

44Buffer 1

Buffer 2

Buffer 3 Transfer Time

Kernel Computation
Waiting for Tuples

Kernel 1 Kernel 2 Kernel 3 Kernel 41 1 2 2 3 3 44

Kernel Downtime Kernel Downtime Kernel Downtime

Batch Processing

N-Buffering

Alberto Ottimo 10Computer Science and Networking

Host<->Device | Shared Memory Protocol

• No use of OpenCL read/write buffers

• Exploits Shared Memory between CPU and FPGA

• Two circular buffers:

• headers buffer

• batches buffer

31 30 29 28 27 26 2 1 0

close ready batch_size

header_t

Host Source operator Device Source operator

Alberto Ottimo 11Computer Science and Networking

DSL Python APIs

Domain Specific Language in Python
• FNode

• parallelism
• gather/dispatch policy
• output datatype
• phase functions (begin, compute, end)
• add private/local/global buffer
• add RNG state (only Generator Operator)

• FPipe
• directory to generate code
• input datatype of the Source Operator
• host <-> device communication protocol
• codebase directory

Alberto Ottimo 12Computer Science and Networking

Running Example | Spike Detection

Several sensors produce information regarding temperature

Tuple format: {device_id, temperature}

Pipeline of 4 stages:

• Source

• Average Calculator: calculates the average over a window of tuples

• Spike Detector: checks the predicate 𝑥! − 𝜇! > (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝜇!)

• Sink

Alberto Ottimo 13Computer Science and Networking

Device Program Implementation

Developer Python Description

Developer Compute Phase Function implementation

OpenCL operator generated code

Alberto Ottimo 14Computer Science and Networking

Evaluation: Applications

Four version of Spike Detection application:

• Base: using the N-Buffer technique for Host<->Device communication

• Shared: using the Shared Memory Protocol for Host<->Device communication

• Skeleton: Generator in place of Source op. and Collector in place of Sink op.

• WindFlow: application implemented using the WindFlow library

Hardware Configuration

• Intel Arria 10 SoC FPGA (dual-core ARM Cortex-A9, 1GB DDR4-2200)

• 2x AMD EPYC 7551 32 cores (64 threads) with 128 GB of RAM

Alberto Ottimo 15Computer Science and Networking

Evaluation: Base vs Shared

Re e9 k8e Ryk9 9yNe Rej39

0

4 · 106

8 · 106

12 · 106

16 · 106

JB+`Q@"�i+? bBx2

hm
TH

2b
fb

2+

"�b2 URV
"�b2 UkV

a?�`2/ URV
a?�`2/ UkV
a?�`2/ U9V

Alberto Ottimo 16Computer Science and Networking

Evaluation: FSP vs WindFlow

qBM/
6HQr "�b2

a?
�`2

/

aF
2H2

iQM
URV

aF
2H2

iQM
U9V

106

107

108

109

j3X8

3Xd
ReX3

RNR

93kX3

hm
TH

2b
fb

2+

Alberto Ottimo 17Computer Science and Networking

Conclusions & Future Work

FSP enables programmers to develop DSP application targeting FPGAs

• a set of Base Operators

• different ways to manage operator state

• two Host<->Device communication protocols

Our tests demonstrate the potential of adopting FPGAs for DSP applications

Future Work

• Provide more Base Operators (FlatMap, Windowing Operators)

• Improve Shared Memory Protocol

• Tests on different hardware configurations

Available on GitHub: https://github.com/blackwut/FSP

Thank You!

Any Questions?

