FSP: A FRAMEWORK FOR DATA STREAM PROCESSING
APPLICATIONS TARGETING FPGAS

ALBERTO OTTIMO
15T YEAR PHD STUDENT

OUTLINE

Context
 FSP Framework

* Running Example

Evaluation

* Conclusion & Future Work

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO T

DATA STREAM PROCESSING

Unbounded sequences of data items (tuples)

Stringent requirements

 High-Throughput (tuples/sec)

* Low Latency

Modeled as a Data-Flow graph

Existing solutions:
* Apache Flink and Storm for distributed systems

» WindFlow for mulficore shared-memory systems

STORM

Apache Flink WINDFLOW

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 2

FPGAS

DSP Block

Memory Block

* Programmable integrated circuits composed by:

* Programmable Logic Modules I
* Programmable Routing Switches j
« DSP Blocks L
* Memory Blocks A -..._ ;

o}

Programmable

. Synfhes|s Routing Switch 'm=m=m=m=m=m ::: Modules
* Hardware Description Languages: Verilog and VHDL
* High Level Synthesis: C/C++ and OpenCL =
COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 3

INTEL FPGA SDK FOR OPENCL

* OpenCL provides a framework for parallel programming
* Platform Model: Host connected to one or more devices
* Execution Model: Host program and Device kernels

* Programming Model: Data Parallel and Task Parallel

* Memory Model: Host

| Host Memory |

* Global / Constant Memory

v Device v

* Local Memory | oo |
 Private Memory T o
* Infel FPGA SDK for OpenCL e e
* Single Work-Item programming model ;2;;;:/ ;:‘::a;:/ J;‘:“n"“;?y me
« Channels Extension - - - -

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 4

FSP FRAMEWORK

* Develop of DSP application targeting FPGAs:

* Aset of base operators

« Efficient Host<->Device communication mechanisms

» Hide the complexity of the implementation of the application structure
* Developer provides:

* the Application description using our DSL in Python

» the business logic OpenCL code of operators

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO

FSP BASE OPERATORS

* FSP provides a set of Base Operators
» Source: distribute tuples received from the Host
* Generator: generates tuples within the FPGA
» Sink: make available received tuples to the Host
* Collector: collects tuples without interact with the Host
* Map: applies one-to-one transformation. Output datatype can differ

* Filter: drops tuples if predicate is False, keeps them otherwise

Host FPGA FPGA Host Host FPGA FPGA Host

FPGA

FPGA

W DOD-Q‘—.—C—>

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 6

OPERATORS: STATELESS AND STATEFUL

* Operators are Single Work-Item kernels
 Stateless: no needs of information to compute incoming tuples
 Stateful: compute an incoming tuple based on its State
« State implemented as:
* Private Memory

* Local Memory .

* Global/Constant Memory

FPGA
* Global Memory access can be: processor |« rn = Fmme e | on]
* read/write only |) T]]
* both read and write v = oo
* Global Memory visibility: et - Mo
* one for each replica S : e
* one shared among all replicas

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO /

GATHER AND DISPATCH POLICIES

* Inter-kernel communication by using the Intel Channels extension

* Gather Policy:

* Blocking Mode e 2 @s
(D—@—@ *
° - 1 (@
Non-Blocking Mode |_® ‘E

© 0 O

» Dispatch Policy:

Left Op. Right Op. Left Op. Right Op.

e Forward

* RoundRobin
* Blocking mode

* Non-Blocking mode

@
@&

@
&

* KeyBy

® B rod d cast Left Op. Right Op. Left Op. Right Op.

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 8

HOST<->DEVICE | N-BUFFERING

» Batch processing:
* one buffer
* long kernel downtime between kernel launches
» Stream processing:
* N buffers recycled in circular manner
* minimal/zero kernel downtime between kernel launches

» good for variable arrival rates

Kernel Downtime Kernel Downtime Kernel Downtime

*

N e—

Kernel 1 Kernel 2 Kernel 3 Kernel 4

Buffer 1

N-Buffering

Buffer 2 [J Kernel Computation

B Waiting for Tuples
O Transfer Time

Buffer 3

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 9

HOST<->DEVICE | SHARED MEMORY PROTOCOL

* No use of OpenCL read/write buffers
* Exploits Shared Memory between CPU and FPGA
* Two circular buffers:

* headers buffer |
close ready batch_size
A

* batches buffer ~ =~
header_t . .

28 27 26 2 1 0

Host Source operator Device Source operator

void push(tuple_t * batch, size_t size, bool close) __kernel source(__global header_t * headers,
{ __global tuple_t * batches)

(header_ready(headers[id]); {
(!done) {
WRITE_MEMORY_BARRIER(); header_t h;
headers[id] = header_new(close, true, batch_size); (!'header_ready(h = headers[id]));

}

done = header_close(h);
mem_fence(CLK_GLOBAL_MEM_FENCE);
headers[id] = header_new(false, false, 0);

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO

DSL PYTHON APIS

Domain Specific Language in Python
* FNode
* parallelism
» gather/dispatch policy
e oufput datatype
» phase functions (begin, compute, end)
» add private/local/global buffer
* add RNG state (only Generator Operator)
* FPipe
» directory to generate code
* input datatype of the Source Operator
* host <-> device communication protocol
* codebase directory

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO

FNode(name,
parallelism,
node_kind,
gather_policy,
dispatch_policy,

datatype,
channel_depth,
begin_function,
compute_function,
end_function)

= FPipe('./codedir', 'tuple_t')

.add_source(source_node)
.add(map_node)
.add(filter_node)

.add_sink(sink_node)
.finalize()
.generate()

RUNNING EXAMPLE | SPIKE DETECTION

Host FPGA Host

Spike
Detector

Several sensors produce information regarding temperature

Tuple format: {device_id, temperature}

Pipeline of 4 stages:

e Source

» Average Calculator: calculates the average over a window of tuples
» Spike Detector: checks the predicate |x,, — u,,| > (threshold * u,)
* Sink

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 12

DEVICE PROGRAM IMPLEMENTATION

Developer Python Description

avg_node = FNode('average_calculator',
avg_par,
FNodeKind.MAP,
FGatherMode.NON_BLOCKING,
FDispatchMode.RR_BLOCKING,
"tuple_t')
avg_node.add_private_buffer('int', 'sizes',
size=avg_keys)
avg_node.add_local_buffer('float', 'windows',
size=(avg_keys, win_dim))

OpenCL operator generated code

__attribute__((uses_global_work_offset(0)))
__attribute__((max_global_work_dim(0)))
__kernel void avg_kernel(...)
{
__private int sizes[AVG_KEYS];
__local float windows[AVG_KEYS][WIN_DIM];
bool done = false;

(!done) {

tuple_t result = avg_compute(...);

COMPUTER SCIENCE AND NETWORKING

Developer Compute Phase Function implementation

tuple_t avg_compute(input_t in,
__private int sizes[AVG_KEYS],
__local float windows[AVG_KEYS][WIN_DIM])

uint idx = in.device_id / __AVERAGE_CALCULATOR_PAR;
float val = in.temperature;

(sizes[idx] == WIN_DIM - 1) {
sizes[1dx] = WIN_DIM;
+ {

sizes[1ldx] += 1;
}

float sum = 0.0f;

#pragma unroll
(uint 1 = 0; i < WIN_DIM - 1; ++i) {
windows[idx][1] = windows[idx][1 + 1];
sum += windows[idx][1];

windows[idx][WIN_DIM - 1] = val;
sum += val;

tuple_t out;

out.device_id = in.device_id;
out.temperature = in.temperature;
out.average = sum / sizes[idx];

out;

ALBERTO OTTIMO

13

EVALUATION: APPLICATIONS

Four version of Spike Detection application:
* Base: using the N-Buffer technique for Host<->Device communication

* Shared: using the Shared Memory Protocol for Host<->Device communication

Skeleton: Generator in place of Source op. and Collector in place of Sink op.

WindFlow: application implemented using the WindFlow library

Hardware Configuration

e Intel Arria 10 SoC FPGA (dual-core ARM Cortex-A9, 1GB DDR4-2200)
o« 2x AMD EPYC 7551 32 cores (64 threads) with 128 GB of RAM

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 14

EVALUATION: BASE VS SHARED

—e— Base (1)
16-10 | | = Base (2)
—+— Shared (1)
) —e— Shared (2)
o 1210 71+ Shared (4)
%
?E
s 8-10°)
B
4-10° |-
O -
\ \

| | | |
16 64 256 1024 4096 16384
Micro-Batch size

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 15

EVALUATION: FSP VS WINDFLOW

107
: 482.8
i 191
108 |
O |
& B
~ |
x i
"% i
-
107 =
106

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 16

CONCLUSIONS & FUTURE WORK

FSP enables programmers to develop DSP application targeting FPGAs
* asetof Base Operators

 different ways to manage operator state

* two Host<->Device communication protocols

Our tests demonstrate the potential of adopting FPGAs for DSP applications

Future Work
* Provide more Base Operators (FlatMap, Windowing Operators)
* Improve Shared Memory Protocol

» Tests on different hardware configurations

Available on GitHub: https://github.com/blackwut/FSP

COMPUTER SCIENCE AND NETWORKING ALBERTO OTTIMO 17

THANK YOU!

ANY QUESTIONS?

